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NOTE

Comments on a Collocation Spectral Solver for the
Helmholtz Equation

We present a simple extension of the spectral-collocation We now have enough mathematical machinery to solve
for ui. We begin by solving for u0 and uN . SubstitutingHelmholtz solver that was first derived by Ehrenstein and

Peyret [3]. Ehrenstein and Peyret considered the case of Eq. (4) into Eq. (2) gives us
a Helmholtz equation with constant coefficients under
Dirichlet boundary conditions. We derive the more general
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, (6)case of nonhomogeneous, Robin boundary conditions.

For simplicity, our discussion is restricted to the one-
dimensional case

and

d 2u
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where a is a constant which is assumed to be $ 0. To solve
wherethis equation we impose the boundary conditions
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D 5 (a1 1 b1d (1)
00 )(a2 1 b2d (1)

NN )and discretize the interval [21, 1] by using the Gauss–
Lobatto grid (see Canuto [2])
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xi 5 cos Sif

ND, i [ h0, ..., N j. (3)

and

Denoting u(xi) by ui, one can compute the derivative of
kNl 5 b1b2d (1)

N0d (1)
0l 2 (a1 1 b1d (1)

00 )b2d (1)
Nl . (12)ui with the equation

As is clear from the structure of Eqs. (6) and (7), reason-dui

dx
5 ON

l50
5 d (1)

il ul, (4) able values for u0 and uN exist ⇔ D ? 0. As we show later,
D ? 0 for most cases of interest.

To determine the remaining ui, we return to the Helm-where the analytic forms of d (1)
ij , are derived in Gottlieb

holtz equation, Eq. (1), but now replace the second-orderet al. [5]. Similarly,
differential by its matrix-collocation equivalent

d 2ui

dx 2 5 ON
l50

d (2)
il ul, (5) ON

l50
d (2)

il ul 2 aui 5 fi, i [ h0, ..., N j. (13)

where it is possible to compute the d (2)
ij components by

Substituting Eqs. (6) and (7) into the above equation givessimply applying Eq. (4) twice. Alternatively, one can use
the analytic formulae found in Zhao andYedlin [11]. To
improve accuracy, one can also use the modifications out- ON21

l51
Cilul 2 aui 5 Zi, i [ h1, ..., N 2 1j, (14)

lined in Bayliss et al. [1].
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where
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We can factor the matrix [Cij ] in the fashion

Cil 5 ON21

j51
aij lj a21

jl , 1 # i, l # N 2 1, (17)

where [aij ] is an (N 2 1)(N 2 1) matrix, whose ith column FIG. 1. The kinetic energy of the 2D Re 5 10,000 driven cavity as
is the eigenvector corresponding to the ith eigenvalue li a function of time.
of the matrix [Cij ], and [a21

ij ] is the inverse of [aij ], i.e.,

ON21

j51
aij a

21
jl 5 ON21

j51
a21

ij ajl 5 dil, (18) uj 5 ON21

m51
ajmwm , (24)

where dil is the Kronecker delta function. where the uj are the solutions at the points xj of Eqs. (1)
The eigenvalues of [Cij] are real, distinct, and less than and (2).

zero, provided that b1b2 # 0 (Gottlieb and Lustman [6]). The generalization to the 2D case can be deduced from
Substituting Eq. (17) into Eq. (14) gives the discussion found in Zhao and Yedlin [11]. A numerical

example of this method is given in the next section.
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j51
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jl ul 2 aui 5 Zi . (19)

DRIVEN CAVITY

We wish to solve the normalized, two-dimensional,Multiplying the above equation by a 21
mi and summing over

Navier–Stokes equation which has the formi enables us to rewrite Eq. (19) as

­v
­t

5 2=p 1 N(v) 1
=2v
Re

, in V, (25)ON21

j51
dmj lj wj 2 awm 5 tm, m [ h1, ..., N 2 1j, (20)

subject to the incompressibility constraintwhere

= · v 5 0, in V, (26)
wm 5 ON21

l51
a21

ml ul, (21)

where v is the velocity, p is the pressure, Re is the Reynolds
number, V is the integration domain of interest, and N is

and the nonlinear operator, which is assumed to have the form

N(v) 5 2 As [v · =v 1 =(vv)]. (27)tm 5 ON21

i51
a21

mi Zi, (22)

This skew symmetric form is adopted to minimize aliasing
We can easily solve Eq. (20) to find that errors (Zang [10]).

To solve the Navier–Stokes equation, we used a first-
wm 5 tm /(lm 2 a), (23) order version of the splitting method given in Karniadakis

et al. [8]. The resulting algorithm required the solution of
one Poisson equation with Neumann boundary conditionsand so
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FIG. 2. Streamline depiction of approximately agA of one complete cycle for the 2D Re 5 10,000 driven cavity.
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and a vector Helmholtz equation with Dirichlet boundary unsteady Navier–Stokes problem and obtained a solution
for the Re 5 10,000, 2D driven cavity.conditions. The code was applied to a 2D driven cavity

and the computed flow solutions for Re # 5,000 compared
well with those of Ghia et al. [4]. Ghia et al. computed APPENDIX: CONDITIONS SUCH THAT D ? 0
steady-state solutions for driven cavity flows up to Re 5
10,000. However, as discussed in Poliashenko and Aidun For the solutions of the boundary values of u to be well
[9], the driven cavity goes unstable for Re . 7,763. To defined, we require that D ? 0 (see Eq. (10)). In this
illustrate these unstable flows, we computed the flow solu- section, we show that D ? 0 for most cases of interest.
tion for Re 5 10,000 driven cavity. For Dirichlet boundary conditions, (a1, a2 ? 0; b1 5

We set the initial velocity of the flow equal to zero b2 5 0), we have D 5 a1a2 ? 0, so we can always determine
throughout the domain of integration, except for the top u0 and uN for such boundary conditions.
‘‘driving’’ lid, where we used a (u, v) velocity of Neumann boundary conditions (a1 5 a2 5 0; b1,

b2 ? 0), give

v 5 (1 2 exp(2K(1 2 x 2
i )), 0), (28)

D 5 b1 b2[d (1)
00 d (1)

NN 2 d (1)
0N d (1)

N0 ].

with K 5 20. This particular form of driving lid has the
By using the analytic form for d (1)

ij (see Gottlieb et al.advantage of removing the corner singularities from the
[5]), it is possible to show that D 5 0 ⇔ N 5 1. In mosttraditional driven cavity. If we did not remove the corner
spectral simulations N 5 8, 16, 32, 64, ..., so we can besingularities, the spectral code would suffer Gibbs oscilla-
assured that D ? 0 in such circumstances.tions (Gottlieb and Orszag [7]) and thereby undergo a

Robin boundary conditions give 4 subcases to consider:major degradation in accuracy.
It took the code approximately 100 cpu hours on a SGI

Personal Iris before the final asymptotic flow state was (a) a1 5 b2 5 0; a2, b1 ? 0 ⇒ D 5 a2b1d (1)
00 ? 0

obtained. To determine when this occurred, we monitored
(b) a2 5 b1 5 0; a1, b2 ? 0 ⇒ D 5 a1b2d (1)

NN ? 0the kinetic energy of the flow (E(t)), where the kinetic
energy was given by (c) b1 5 0; a2 , a1 , b2 ? 0 gives

E(nDt) 5
1
2 ONx21

i51
ONy21

j51
Aij [(u (n)

ij )2 1 (v (n)
ij )2], (29) D 5 0 ⇔ Nc ; 1

Ï2
F6a2
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2 1G1/2

, (30)

where Nc is the value of N such that D 5 0. For the casewith Nx and Ny being the number of collocation points in
b2 5 0, b1 ? 0, one obtainsthe x and y directions (Nx 5 Ny 5 64), and Aij being the

area (mass) associated with the point (xi, yj ).
A close examination of the kinetic energy revealed a

D 5 0 ⇔ Nc ; 1

Ï2
F2

6a1

b1

2 1G1/2

, (31)variation in the kinetic energy as a function of time (see
Fig. 1). This shows the quasiperiodic nature of this unsteady
flow, where the period of oscillation was found to be P17.5

(d) and finally, for a1 , a2 , b1 , b2 ? 0time units.
Finally, in Fig. 2, a partial depiction of the unsteady

Re 5 10,000 driven cavity can be seen, where we show
D 5 0 ⇔ Nc ; 1

Ï2
F3(a2b1 2 a1b2)

b1b2
approximately agA of the quasiperiodic cycle that the cavity
flow undergoes.

6
3Ï(a2b1 2 a1b2)2 1 4b1b2(a1a2 1 b1b2/4)

b1b2CONCLUSIONS

We have constructed a spectral solver for the Helmholtz 2 1G1/2

. (32)
equation using the Chebyshev collocation method. The
solver, when applied to Helmholtz equations with constant
(positive) coefficients and general boundary conditions, The case for a1 5 0 (or a2 5 0) and the rest non-zero,

is included in Eq. (32). Clearly, for these more generalsolves these equations in a direct (i.e., noniterative)
manner. boundary conditions, one has to ensure that N ? Nc so

that D ? 0.As an illustrative example, we applied our solver to an
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